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Stochastic Risk Premiums, Stochastic Skewness

in Currency Options, and Stochastic Discount Factors

in International Economies

ABSTRACT

In this paper, we develop dynamic models of stochastic discount factors in international economies

that are capable of producing stochastic risk premiums and stochastic skewness in currency options.

The source of stochastic risk premiums and stochastic skewness can be stochastic volatility in the

uncertainty of the economy or stochastic market price of theuncertainty, or both. We estimate

these models using both time-series returns and option prices on three currency pairs that form a

triangular relation: dollar-yen, dollar-pound, and pound-yen. The estimation reveals several results

about the structure of risk premiums in the international economy. First, the average risk premium

in Japan is significantly larger than the risk premium in the U.S. or the UK. Second, the risk pre-

mium on the global risk factor is both more persistent and more volatile than the risk premiums

on country-specific risks. Third, investors respond to shocks differently depending on whether the

origins of the shocks are global or country-specific. The risk premium increases when the global

(domestic) risk factor receives a positive (negative) shock, suggesting that investors demand a risk

premium when their wealth declines relative to the global portfolio. Finally, the uncertainty in

each economy contains a jump component that arrives an infinite number of times within any finite

interval, but only downside jumps appear to be priced.

JEL CLASSIFICATION CODES: G12, G13, F31, C52.

KEY WORDS: Stochastic discount factors; international economy; stochastic risk premium; stochastic

skewness; currency options; foreign exchange rate dynamics; time-changed Ĺevy processes; unscented

Kalman filter.



Theoretical models of foreign exchange dynamics have positive and normative implications. Posi-

tively, the models assist us in understanding the possible departures between exchange rates and funda-

mentals. See, for example, Dumas (1992), Mark (1995), Evans and Lyons (2002), and Engel and West

(2004) for recent contributions. Starting with Lucas (1982), exchange rates constitute crucial build-

ing blocks for testable multi-period equilibrium models of the international economy. More generally,

the endogenously derived models help us appreciate the links between the price of forward-looking

currency derivatives and the distributional properties of the exchange rate (Garman and Kohlhagen

(1983), Dumas, Jennergren, and Naslund (1995), Bates (1996), and Bakshi and Chen (1997)). On the

normative side, exchange rate models can be used to advocate monetary and fiscal policy rules and for

prescribing central bank interventions.

In this paper, we develop dynamic models of stochastic discount factors in international economies

that are consistent with three distinct, yet interrelated, phenomena observed in currency markets. First,

the risk-reversal quotes, as measured by the difference in the Black and Scholes (1973) implied volatil-

ities between out-of-money call and put currency options, show substantial time-variation and often

switch signs. This options market feature is symptomatic of stochastic skewness in the conditional

currency return distribution. Second, the butterfly spread quotes, defined as the average out-of-money

call and put implied volatilities minus the at-the-money counterpart, are uniformly positive across dif-

ferent option maturities and different underlying currencies, indicating fat-tailed risk-neutral currency

return distributions. Third, extant empirical studies have documented strongly time-varying currency

risk premiums (Fama (1984), Bekaert and Hodrick (1992), Dumas and Solnik (1995), Engel (1996),

and Backus, Foresi, and Telmer (2001)).

What are the sources of stochastic risk premiums in international economies?What minimal the-

oretical structures are needed to internalize the evidence from currency returns and currency options?

How do the different types of risks (say, global versus country-specific) vary over time and how are

they priced differently? How are the risk premium dynamics related to observed stochastic skewness

and kurtosis in the conditional currency return distribution? The thrust ofthis research is to answer

these questions from both theoretical and empirical perspectives.

In any economy precluding arbitrage, there always exists a stochastic discount factor that links fu-

ture payoffs to their intrinsic values (Harrison and Kreps (1979)). In acomplete market, this stochastic

discount factor is unique, and the ratio of the stochastic discount factorsin the two economies deter-

mines the exchange rate between them. In the setting of Lucas (1982)), forinstance, the equilibrium

home-currency price of a foreign currency is the ratio of the foreign-country marginal utility to the

home-country counterpart. Therefore, exchange rates offer a direct unfiltered window to the stochastic
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discount factors and the relative risk-taking behaviors of investors in international economies. In this

paper, we propose to identify the dynamics of stochastic discount factorsin international economies

using the time-series of currency returns and option prices. Specifically,using three currency pairs

that form a triangular relation, i.e., the dollar-yen, dollar-pound, and yen-pound, we study the dynamic

behaviors of the stochastic discount factors and stochastic risk premiums inthe three economies of the

U.S., Japan, and the UK.

We propose a class of models of stochastic discount factors that are parsimonious in terms of

identification and yet flexible to accommodate both stochastic risk premiums and stochastic skewness

in the currency return distribution, which we theoretically show are inherently linked. Our model

specifications allow the stochastic risk premiums on global and country-specific risks to be controlled

by separate dynamic processes. Through this parameterization, we can empirically study how the risk

premiums of an economy react differently to shocks on different types ofrisks.

If economies are strictly symmetric, the global risk component cancels in the logratio of the two

stochastic discount factors. This feature renders the global risk components of the stochastic discount

factors unidentifiable from the data on exchange rates. Nevertheless, our estimation shows that the

three economies under investigation are asymmetric. In particular, the average risk premium in Japan

is about 50 percent higher than the average risk premium in the U.S. or the UK.

Given the asymmetry between the three economies, we can identify the risk premium dynamics on

both the global risk component and the country-specific components. Theestimation shows that the

risk premium dynamics on the two types of risks are quite different. The risk premium on the global

risk factor is both more persistent and more volatile than the risk premium on the country-specific risk

factors. This empirical evidence implies that the dynamics of the stochastic discount factors share a

large global risk component, suggesting a high degree of integration amongthe three economies.

The estimation results also reveal that investors respond to global shocksand country-specific

shocks in markedly different ways. Investors increase their risk premium when the country-specific

risks receive a negative shock; in contrast, the risk premium declines when the global risk component

receives a negative shock. Such a dichotomy between reactions to global and country-specific risks sug-

gest that the risk preference of investors in an economy varies with therelativewealth of the economy,

with the global portfolio as the benchmark. Investors demand a higher risk premium when their wealth

declines relative to the global portfolio. A negative shock to the country-specific risk components and

a positive shock to the global risk factor both generate a negative impact on the relative wealth of the

economy and is hence associated with a rise in risk premiums.
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Finally, the estimation identifies a jump component in each economy that arrives an infinite number

of times within any finite time intervals. This finding contradicts with traditional compound Poisson

jump specifications (Merton (1976)), but strengthens the findings from recent empirical works on equity

index options (Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003), Huang and Wu (2004), and

Wu (2004)). In fact, our multi-economy estimation identifies a significant downward jump component

but not an upward jump component in the stochastic discount factors, suggesting that although the

economy can receive both negative and positive shocks, investors are only concerned with downside

jumps as a potential source of risk. Upside jumps are not priced.

Traditional literature often studies the behavior of risk premiums through various types of expec-

tation hypothesis regressions. Under the null hypothesis of zero or constant risk premium, the slope

coefficients of these regressions should be one. Hence, the point estimates on the regression slopes

reveal whether the risk premium is constant or time-varying. More recently, researchers have recog-

nized the rich information content of option markets and started to infer the riskpremium behavior

from a joint analysis of options and the underlying assets. The focus of this strand of literature is on

equity index and equity index options in a single economy, mainly the United States.1 In this setting,

the estimated stochastic discount factors are typically one-dimensional projections on the single equity

index. The pricing of risks that are orthogonal to the equity index is largelymissed by this projection.

Furthermore, it is difficult to use a one-dimensional projection to study the multi-dimensional nature

of the stochastic discount factors in international economies. We contributeto the literature by propos-

ing to infer the multi-dimensional dynamic behaviors of stochastic discount factors in international

economies using currency returns and currency options.

The paper is organized as follows. Section I outlines the connection between stochastic discount

factor dynamics and nominal exchange rates. Section II proposes a class of models for stochastic

discount factors that includes both a global risk factor and country-specific risk factors. Our framework

allows the risk premiums on the two types of risks to follow separate dynamics. Within this general

setup, we analyze what type of minimal structures are necessary to capture the stylized evidence in

currency returns and currency options. We then derive tractable forms for option pricing and for the

characteristic function of the currency returns. Section III describesthe currency and currency options

data set for dollar-yen, dollar-pound, and pound-yen exchange rates. Section IV presents an estimation

1Prominent examples include Jackwerth and Rubinstein (1996), Pan (2002), Engle and Rosenberg (2002), Bakshi, Ka-
padia, and Madan (2003), Bakshi and Kapadia (2003), Broadie, Chernov, and Johannes (2004), Eraker (2004), and Bliss
and Panigirtzoglou (2004). Recently, Driessen and Maenhout (2004)investigate the nature of jump and volatility risks using
equity index options from three countries.
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approach based on the joint time-series of currency returns and currency option prices. Section V

discusses the estimation results and Section VI concludes.

I. Stochastic Discount Factor Dynamics and Nominal Exchange Rates

Let us describe a set ofN economies by fixing a filtered complete probability space{Ω,F ,P ,(F t)0≤t≤T },

with some fixed horizonT . We assume no arbitrage in each economy. Therefore, for each economy,

we can identify at least one strictly positive process,M h
t (h = 1, . . . ,N), which we call the state-price

deflator, such that the deflated gains process associated with any admissible trading strategy is a mar-

tingale (Duffie (1992)). We further assume thatM h
t itself is a semimartingale. The ratio ofM h

t at two

time horizons will henceforth be referred as the stochastic discount factor.

We useXh to summarize the aggregate uncertainty in economyh and represent the state-price

deflator via the following multiplicative decomposition:

M h
t = exp

(
−

∫ t

0
rh
s ds

)
E

(
−

∫ t

0
γh

s dXh
s

)
, h = 1,2, . . . ,N, (1)

whererh
t denotes the instantaneous interest rate in economyh, γh

t denotes the market price of risk in

economyh, andE (·) denotes theDoléans-Dadeexponential operator (Jacod and Shiryaev (1987)). The

second component defined by the Doléans-Dade exponential can be interpreted as the Radon-Nikodým

derivative that takes us from the statistical measureP to the economy-h risk-neutral measureQ h:

dQ h

dP

∣∣∣∣
t
≡ E

(
−

∫ t

0
γh

s dXh
s

)
. (2)

In equation (1), bothrt andγt can be stochastic. We can think ofXh as the return shocks to the

aggregate wealth in the economy. The shocksXh can be multi-dimensional, in which caseγh
t dXh

t

denotes an inner product. In representative agent economies, the stochastic discount factor can be

interpreted as the ratio of the marginal utilities of consumption over two time horizons.

In complete markets, the state-price deflator for each economy is unique andthe ratio of the state-

price deflators between two economies determines the exchange rate between them (Lucas (1982),
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Dumas (1992), Bakshi and Chen (1997), Basak and Gallmeyer (1999), and Backus, Foresi, and Telmer

(2001)). LetSh f denote the currency-h price of currencyf , with h being the home economy, we have

Sh f
t =
M f

t

M h
t

, h, f = 1,2, . . . ,N. (3)

Equation (3) defines the formal link between the stochastic discount factors in any two economies and

the exchange rate between them. This link tells us that the time-series of currency returns and currency

option prices contain important information about the dynamics of aggregate uncertainties affecting

the two economies and how the underlying risks are priced. In this paper, instead of following the

extant literature in using equity index options in a single country to study the stand-alone behavior of

the stochastic discount factor in that economy, we exploit the link in (3) and use currency returns and

currency options to study the joint dynamics of stochastic discount factorsin international economies.

II. Model with Stochastic Risk Premium and Stochastic Skewness

In this section, we propose a class of models for the stochastic discount factors that are flexible enough

to generate stochastic risk premiums and stochastic skewness in currency returns. Formally, we have,

M h
t = exp

(
−rht

)
exp

(
−Wg

Πh
t
− 1

2
Πh

t

)
exp

(
−

(
Wh

Λh
t
+Jh

Λh
t

)
−

(
1
2

+kJh [−1]

)
Λh

t

)
, (4)

which decomposes the state-price deflator into three orthogonal components. The first component

captures the contribution from interest rates. Since a dominant proportionof exchange rate movements

is independent of interest rate movements, we assume deterministic interest rates for simplicity and use

rh to denote the continuously compounded spot interest rate of the relevant maturity.

The second component incorporates a global diffusion risk factorWg
Πh

t
, whereWg denotes a standard

Brownian motion andΠh
t ≡

∫ t
0 γh

sdsdefines a stochastic time change, capturing stochastic risk premium

on this global risk factor. We labelγh
t as the risk premium rate (per unit time) and use the superscript

h on γt to indicate that the risk premium on the global risk factor can exert a differential impact across

different economies.12Πh
t is the convexity adjustment that makes this second component an exponential

martingale.

The third component describes a country-specific jump-diffusion risk factor
(
Wh +Jh

)
, whereWh

denotes another standard Brownian motion independent of the global riskcomponentWg, andJh de-

notes a pure jump Ĺevy component.Λh
t ≡ ∫ t

0 vh
sds defines another stochastic time change, capturing
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stochastic risk premium on the country-specific risk component, withvh
t being the risk premium rate

on the country-specific risk factor.

In the specification of the stochastic discount factor in (4),kJh[s] denotes the generalized cumulant

exponent of the Ĺevy jump componentJh, defined by

kJh[u] ≡ 1
t

lnE
(

euJh
t

)
, u∈ D ⊆ C (5)

which, as a property of Ĺevy processes, does not depend on the the time horizon. A cumulant exponent

is normally defined on the positive real line, but it is convenient to extend thedefinition to the complex

plane,u∈ D ⊆ C , where the exponent is well-defined. Again,
(

1
2 +kJh [−1]

)
Λh

t denotes the convexity

adjustment term of
(
Wh

Λh
t
+Jh

Λh
t

)
to make the last term an exponential martingale.

In principle, we can also allow a jump component in the global risk factor, butexperimental estima-

tion shows that the jump in the global risk factor is not significant. Hence, we choose a pure diffusion

specification for the global factor to maintain parsimony.

In equation (4), we decompose the risk in each economy into a global risk component and a country-

specific risk component. Through stochastic time changes (Carr and Wu (2004b)), we allow the risk

premiums on the two components to be governed by separate dynamics. Thus,through model estima-

tion, we can investigate how investors respond to different types of risksin international economies. We

can also study the degree of international integration by estimating the relativeproportion of variation

in the stochastic discount factor that is driven by the global risk component.

A. Specification of Jumps and Risk Premium Rate Dynamics

Within the general specification in (4), we consider two classes of parameterizations, under which the

models can be fully identified using currency returns and options.

A.1. Proportional Asymmetry

A parsimonious way to capture asymmetry across economies is to use a vector of scaling coefficients

ξ =
[
ξh

]N
h=1 to model the average difference in risk premium in different economies. Asymmetries

arise when the economies have different risk magnitudes and/or when investors have different risk

preferences. For identification, we normalize the scaling coefficient forthe first economy to unity:
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ξ1 = 1. Then, the deviations of the scaling coefficients from unity for other economies capture their

average differences in risk premium from the first economy.

With these scaling coefficients, we assume that the jump componentJh in each economy is i.i.d.

with the same Ĺevy density specification as in (6). We model the Lévy densityvh[x] of this i.i.d. jump

component using an exponentially dampened power law:

vh [x] =

{
λe−β+xx−α−1 x > 0

λe−β− |x| |x|−α−1 x < 0
,h = 1,2, · · · ,N, (6)

with α ∈ (−1,2) andλ,β+,β− > 0. We adopt this specification from Carr, Geman, Madan, and Yor

(2002) as Wu (2004) shows that the dampened power law jump specificationcan match evidence in

stocks and currencies. The cumulant exponents whenα 6= 0 andα 6= 1 are,

kJ [u] = Γ [−α] λ
(
(β+−u)α − (β+)α +(β− +u)α − (β−)α)

+uC[δ] . (7)

whereΓ [−α] denotes the incomplete Gamma function andC[δ] is an immaterial drift term that depends

on the exact form of the truncation function used in the computation of the cumulant. We can henceforth

safely ignore this term in our analysis and drop this term in our representations. The Ĺevy density has

singularities atα = 0 andα = 1, in which cases the cumulant exponent takes on different forms:

kJ [u] = −λ ln(1−u/β+)−λ ln(1+u/β−) when α = 0,

kJ [u] = λ(β+−u) ln(1−u/β+)+λ(β− +u) ln(1+u/β−) when α = 1.
(8)

With the i.i.d. assumption on the jump component, we accommodate the average difference in

the risk premium rates across different economies by applying the constant scaling coefficients to an

otherwise independent and identical risk premium rate dynamics:

∂Λh
t /∂t = ξhvh

t , (9)

wherevt has the the same (but independent) specification across all economiesh = 1,2, · · · ,N. We

model this independent and identical dynamic process using the square-root process of Cox, Ingersoll,

and Ross (1985),

dvh
t = κv

(
θv−vh

t

)
dt+ωv

√
vh

t dWvh
t , (10)
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whereρv = E(dWvhdWh)/dt captures the correlation between shocks of the country-specific diffusion

risk and its risk premium rate. We can also rewrite the time change asΛh = ξhΛ to stress that the

country-specific risk premium rates across different countries differin magnitude by a constant scalar.

For the global risk factor, we apply the same set of scaling coefficients to aglobal risk premium

rate factor,

∂Πh
t /∂t = ξhzt , Πh = ξhΠ. (11)

We assume that the global risk premium rate factor,zt , also follows a square-root process,

dzt = κz(θz−zt)dt+ωz
√

zt dWz
t , (12)

with ρz = E(dWzdWg)/dt.

We identify this model using the time-series of currency returns and option prices on three currency

pairs: the dollar-yen, the dollar-pound, and the yen-pound. We normalize the scaling on the U.S.

economyξUS = 1. The model has 14 parameters for the three economies:

Θ ≡ [ξJPY,ξGBP,κz,θz,ωz,ρz,κv,θv,ωv,ρv,λ,β+,β−,α].

Within each model, we consider three special cases for the jump specificationwith α fixed at−1, 0,

and 1, respectively. The three differentα’s generate finite activity, infinite activity with finite variation,

and infinite variation jumps, respectively.

A.2. Strict Symmetry Across Economies

Under strict symmetry, the same parameterization for the state-price deflator applies to all economies.

Reality aside, this assumption not only simplifies notation and reduces the numberof free parame-

ters, but it also highlights the issue of state-price deflator identification usingexchange rates. A key

implication of strict symmetry is that the contribution of the global risk factor in the two economies

cancels. Thus, from currency returns and currency options, we can only identify the country-specific

risk component, but not the global risk component.

Symmetry can be regarded as a degenerating case of the general proportional asymmetry case

with ξh = 1 for all h. In this setting, the global risk factor dynamics(κz,θz,ωz,ρz) can no longer be

identified. Therefore, we can only identify the country-specific part ofmodel (4), which is controlled

by eight parameters:Θ ≡ [κv,θv,ωv,ρv,λ,β+,β−,α].
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B. Currency Return Dynamics

Under the above parameterization, the log return on the exchange ratesh f
t ≡ lnSh f

t /Sh f
0 over the horizon

[0, t] is,

sh f
t = ln

M f
t

M f
0

− ln
M h

t

M h
0

=
(

rh− r f
)

t +

(√
ξh−

√
ξ f

)
Wg

Πt
+

1
2

Πt

(
ξh−ξ f

)
(13)

+

(
Wh

ξhΛt
+Jh

ξhΛt
+

(
1
2

+kJ [−1]

)
ξhΛt

)
−

(
W f

ξ f Λt
+J f

ξ f Λt
+

(
1
2

+kJ [−1]

)
ξ f Λt

)
.

Equation (13) shows that when economies admit strictly symmetry (ξh = ξ f ), the impact of the global

risk factorWg vanishes. The identification of the global risk factor hinges on asymmetry.

Conditional on a fixed unit level of time-changeΛt = Πt = 1, the currency risk premium is:

RP ≡ E
(

Sh f
t /Sh f

0

∣∣∣Λt = Πt = 1
)
− (rh− r f )

=

(
ξh−

√
ξhξ f

)
+ξh(1+kJ [1]+kJ [−1]) , (14)

where the first term captures the contribution from the global risk factor and the second term captures

the contribution from the country-specific risk factors. SinceRP in equation (14) is a constant, we

introduce stochastic currency risk premium via the stochastic time changesΛt andΠt .

In the absence of the stochastic time changes and hence stochastic risk premiums, the currency

return is governed by three Brownian motions with constant volatilities and two jump components with

constant arrival rates. The two jump components can generate distributional non-normality (skewness

and kurtosis) for the currency return. Specifically, fixingΛt = Πt = 1 and taking successive partial

derivatives of the cumulant exponentcn ≡ kn
J[u]
∂un

∣∣∣
u=0

, we can show that the variance (c2) and the third

(c3) and fourth cumulants (c4) for the currency return are given by,

c2 =
(
ξh +ξ f

)
λΓ[2−α]

(
(β+)α−2 +(β−)α−2

)
+Vd,

c3 =
(
ξh−ξ f

)
λΓ[3−α]

(
(β+)α−3− (β−)α−3

)
,

c4 =
(
ξh +ξ f

)
λΓ[4−α]

(
(β+)α−4 +(β−)α−4

)
,

(15)

whereVd capture the variance contribution from the diffusion components,

Vd = 2
(

ξh +ξ f
)
−2

√
ξhξ f . (16)
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The diffusion components have zero contribution to higher-order cumulants. Thus, the currency return

shows nonzero skewness or non-zero third cumulantc3 when (1) the jump component in the log state-

price deflator is asymmetric:β+ 6= β−, and (2) the two economies are asymmetric in the average

magnitudes of risk premiums:ξh 6= ξ f . In fact, these conditions are necessary for the existence of non-

zero odd-order cumulants beyond three. In contrast, the fourth cumulant (c4) or the excess kurtosis for

the currency return is strictly positive as long as the jump component in the log state-price deflator is

not degenerating (λ 6= 0). Positive fourth cumulant implies that the tails of the distribution are fatter

compared to the normal distribution. Nevertheless, since all the cumulants in (15) are constant, a model

with constant risk premiums (i.e.,Λt = Πt = 1) cannot capture the evidence from currency option

markets that the currency return skewness is stochastic (Carr and Wu (2004a)). Stochastic skewness in

currency return distribution warrants stochastic risk premium.

When the risk premium rates are allowed to be stochastic as in currency dynamics (13), currency

return skewness can also arise from three additional sources: (1) correlation (ρz) betweenWg
t andzt ,

(2) correlation (ρh
v) betweenWh

t andvh
t , and (3) correlation (ρ f

v ) betweenW f
t andvf

t . Allowing the

three risk premium rates(zt ,vh
t ,v

f
t ) to be stochastic produces stochastic skewness in currency returns.

To derive the risk-neutral return dynamics, we note that the measure change from the statistical

measureP to the home-country risk-neutralQ h is defined by the exponential martingale:

dQ h

dP

∣∣∣∣
t
≡ exp

(
−Wg

ξhΠt
− 1

2
ξh Πt

)
exp

(
−

(
Wh

ξhΛt
+Jh

ξhΛt

)
−

(
1
2

+kJ [−1]

)
ξh Λt

)
. (17)

The martingale condition requires that under home-economy risk-neutral measureQ h,

sh f
t = (rh− r f )t +

(√
ξh−

√
ξ f

)
Wg

Πt
− 1

2

(√
ξh−

√
ξ f

)2

Πt

+

(
Wh

ξhΛt
+JhQ

ξhΛt
−

(
1
2

+kQJ [1]

)
ξhΛt

)
+

(
−W f

ξ f Λt
−J f

ξ f Λt
−

(
1
2

+kJ [−1]

)
ξ f Λ f

t

)
,(18)

SinceJ f is independent ofJh, it remains unchanged underQ h. The home-economy jump component

changes fromJh
Λh

t
to JhQ

Λh
t

underQ h, where the Ĺevy density forJhQ
t becomes

vQ h [x] = e−x νh [x] =

{
λe−(β++1)xx−α−1 x > 0

λe−(β−−1)|x| |x|−α−1 x < 0
. (19)

Hence,vQ h [x] andvh [x] share the same parametric form withβQ+ = β+ + 1 andβQ− = β− − 1. For

βQ− > 0, we needβ− > 1.
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Under measureQ h, the country-specific and global risk premium rates processes changeto

dvh
t =

(
κvθv−κQv vh

t

)
dt+ωv

√
vh

t dWvh
t ,

dzt =
(
κzθz−κQz zt

)
dt+ωz

√
zt dWz

t ,

with κQv = κv+
√

ξhωvρv andκQz = κz+
√

ξhωzρz. The process forvf
t does not change under measure

Q h sinceWv f is independent ofWg andWh.

In light of our analysis, it is natural to ask: What minimal structures are necessary to reproduce

observed behaviors in currency returns and options? To gain some basic understanding and economic

intuition on risk and pricing in international economies, consider a prototype model where risk in each

economy is governed by a Brownian motion with constant volatility and constantmarket price of risk:

M h
t = exp

(
−rht

)
exp

(
−γh σhWh

t − 1
2
(γh σh)2 t

)
, h = 1,2, . . . ,N, (20)

whereWt denotes a standard Brownian motion andσ andγ are constant scalars. Instead of separately

specifying a global risk component, we allow constant correlation betweenthe Brownian motions for

any two economiesh and f : ρh f ≡ E
(
Wh

t W f
t

)
/t. It is obvious from (20) that in a pure diffusion

setting, the diffusion volatilityσ as a risk measure and the market price of riskγ cannot be separately

identified from the stochastic discount factors. Under (20), the log return on the exchange rate is:

sh f
t = (rh− r f )t +

1
2

(
(γhσh)2− (γ f σ f )2

)
t +

(
γhσhWh

t − γ f σ fW f
t

)
, (21)

which implies that the currency return is normally distributed under the statisticalmeasureP with

mean,µs ≡ (rh− r f )+ 1
2

(
(γhσh)2−

(
γ f σ f

)2
)

and varianceVs ≡ (γhσh)2 +(γ f σ f )2−2γhσhγhσhρh f .

In this economy, the annualized expected return on the exchange rate is1
t lnE (St/S0) = µs+ 1

2Vs and

the currency risk premium is a constant:RP = (γhσh)2− γhσhγ f σ f ρh f . The magnitude and sign of the

currency risk premium depends on both the market prices of risk (determined by relative risk aversions)

of the two countries (γh,γ f ) and on the variance and covariance of the return shocks on the aggregate

wealth (σh,σ f ,ρh f ). Clearly, this prototype model is incapable of producing any currency return non-

normalities. One possible direction to generate distribution non-normality is by incorporating Ĺevy

jumps in shocks to aggregate wealth:M h
t = exp(−rht) exp

(
−γhσhWh

t − 1
2(γhσh)2t − γhJh

t −kJh[−γh] t
)
.

However, under Ĺevy specification and constant market price of risk and volatility, the risk premium

and risk-neutral skewness are still constant. Our model in (4) with globaland country-specific risk

factors and stochastic risk premium rates appears desirable from both theoretical and empirical stand-

points.
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C. Option Pricing

Given theQ h-dynamics of the log currency return in (18), we can derive its generalized Fourier trans-

form as in Carr and Wu (2004b),

φQs ≡ EQ
(

eiush f
t

)

= EQ
(

e
iu

(
(rh−r f )t+

((√
ξh−

√
ξ f

)
Wg

Πt
− 1

2

(√
ξh−

√
ξ f

)2
Πt

)))

×EQ
(

e
iu

((
Wh

ξhΛt
+JhQ

ξhΛt
−( 1

2+kQJ [1])ξhΛt

)
+

(
−W f

ξ f Λt
−J f

ξ f Λt
−( 1

2+kJ[−1])ξ f Λt

)))

= eiu(rh−r f )tEN g
(

e−ψg [u]Πt

)
EN

h
(

e−ψh[u]ξh Λt

)
EN

f
(

e−ψ f [u]ξ f Λt

)
, (22)

where
(
ψg [u]ψh [u] ,ψ f [u]

)
denote the characteristic exponents of the three Lévy components prior

to time-change that are due to the global risk component, home country-specific risk component, and

foreign country-specific risk component, respectively:

ψg[u] =
1
2

(√
ξh−

√
ξ f

)2(
iu+u2) ,

ψh [u] = iu

(
1
2

+kQJ [1]

)
+

1
2

u2−kQJ [iu] ,

ψ f [u] = iu

(
1
2

+kJ [−1]

)
+

1
2

u2−kJ [−iu] .

[
N g,N h,N f

]
denote three new measures defined by the following exponential martingales,

dN g

dQ

∣∣∣
t

= exp

(
iu

((√
ξh−

√
ξ f

)
Wg

Πt
− 1

2

(√
ξh−

√
ξ f

)2
Πt

)
+ψg [u]Πt

)
,

dN h

dQ

∣∣∣
t

= exp
(

iu
(
Wh

ξhΛt
+JhQ

ξhΛt
−

(
1
2 +kQJ [1]

)
ξhΛt

)
+ψh [u]ξhΛt

)
,

dN f

dQ

∣∣∣
t

= exp
(

iu
(
−W f

ξ f Λt
−J f

ξ f Λt
−

(
1
2 +kJ [−1]

)
ξ f Λt

)
+ψ f [u]ξ f Λt

)
.

(23)

To take the expectation, we need the dynamics for the risk premium rates under their respective new

measures:

dvh
t =

(
κvθv−κN

h

v vh
t

)
dt+ωv

√
vh

t dWvh
t , (24)

dvf
t =

(
κvθv−κN

f

v vf
t

)
dt+ωv

√
vf

t dWv f
t , (25)

dzt =
(

κzθz−κN
g

z zt

)
dt+ωz

√
ztdWz

t , (26)
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with
κN

h

v = κv +(1− iu)
√

ξhωvρv,

κN
f

v = κv + iu
√

ξ f ωvρv,

κN
g

z = κz+
√

ξhωzρz− iu
(√

ξh−
√

ξ f
)

ωzρz.

(27)

Since the three risk premium rates follow affine dynamics under their relevant measuresN g, N h,

andN f , the expectations in (22) generate exponential-affine solutions:

φQs = eiu(rh−r f )tEN
g
(

e−ψg[u]Πt

)
EN

h
(

e−ψh[u]ξhΛt

)
EN

f
(

e−ψ f [u]ξ f Λt

)

= eiu(rh−r f )te−bg(t)z0−cg(t)−bh(t)vh
0−ch(t)−bf (t)v

f
0−cf (t), (28)

where
(

z0,vh
0,v

f
0

)
are the time-0 levels of the three risk premium rates and the coefficients[b(t) ,c(t)]

on each risk premium rate take the same functional forms:

bc(t) =
2ψc(1−e−ηct)

2ηc−(ηc−κN c)
(

1−e−ηht
) ,

cc(t) = κθ
σ2

v

[
2ln

(
1− ηc−κN c

2ηc

(
1−e−ηct

))
+(ηc−κN c)t

]
,

(29)

with ηc =

√(
κN c

)2
+2σ2

vψc and forc= g,h, f , respectively. Given the generalized Fourier transform,

we can now follow Carr and Madan (1999) and use fast Fourier inversion to obtain option prices.

D. Characteristic Function under MeasureP

For estimation, we also need to derive the log likelihood function for the currency returns. We first

derive the characteristic function of the log currency returns under thestatistical measureP and then

obtain the density of the currency return via fast Fourier inversion.

Given theP -dynamics for the currency return in (13), we derive its characteristic function as,

φPs ≡ EP
(

eiush f
t

)
,

= EP
(

e
iu

(
(rh−r f )t+

((√
ξh−

√
ξ f

)
Wg

Πt
+ 1

2Πt(ξh−ξ f )
)))

×EP
(

e
iu

((
Wh

ξhΛt
+Jh

ξhΛt
+( 1

2+kJ[−1])ξhΛt

)
−

(
W f

ξ f Λt
+J f

ξ f Λt
+( 1

2+kJ[−1])ξ f Λt

)))

= eiu(rh−r f )t EN
g
(

e−ψg[u]Πt

)
EN

h
(

e−ψh[u]ξhΛt

)
EN

f
(

e−ψ f [u]ξ f Λt

)
, (30)
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where
(
ψg [u] ,ψh [u] ,ψ f [u]

)
now denote the characteristic exponents of the three Lévy components

prior to time change under the statistical measureP :

ψg[u] = −1
2 iu

(
ξh−ξ f

)
+ 1

2

(√
ξh−

√
ξ f

)2
u2,

ψh [u] = −iu
(

1
2 +kJ [−1]

)
+ 1

2u2−kJ [iu] ,

ψ f [u] = iu
(

1
2 +kJ [−1]

)
+ 1

2u2−kJ [−iu] .

[
N g,N h,N f

]
denote three new measures defined by the following exponential martingales,

dN g

dP

∣∣∣
t

= exp
(

iu
((√

ξh−
√

ξ f
)

Wg
Πt

+ 1
2Πt

(
ξh−ξ f

))
+ψg[u]Πt

)
,

dN h

dP

∣∣∣
t

= exp
(

iu
(
Wh

ξhΛt
+Jh

ξhΛt
+

(
1
2 +kJ [−1]

)
ξhΛt

)
+ψh [u]ξhΛt

)
,

dN f

dP

∣∣∣
t

= exp
(

iu
(
−W f

ξ f Λt
−J f

ξ f Λt
−

(
1
2 +kJ [−1]

)
ξ f Λt

)
+ψ f [u]ξ f Λt

)
.

(31)

The dynamics for the three risk premium rates under the new measures become,

dzt =
(

κzθz−κN
g

z zt

)
dt+ωz

√
ztdWz

t ,

dvh
t =

(
κvθv−κN

h

v vh
t

)
dt+ωv

√
vh

t dWvh
t ,

dvf
t =

(
κvθv−κN

f

v vf
t

)
dt+ωv

√
vf

t dWv f
t ,

(32)

with

κN
g

z = κz− iu

(√
ξh−

√
ξ f

)
ωzρz, κN

h

v = κv− iu
√

ξhωvρv, κN
f

v = κv + iu
√

ξ f ωvρv. (33)

Since the three risk premium rates follow affine dynamics under their relevant measuresN g, N h, and

N f , the expectations in (30) leads to the solution below:

φPs = eiu(rh−r f )te

(
−bg(t)z0−cg(t)−bh(t)vh

0−ch(t)−bf (t)v
f
0−cf (t)

)

, (34)

where
(

z0,vh
0,v

f
0

)
are the time-0 levels of the three risk premium rates and the coefficients[bc(t) ,cc(t)]

for c = h, f ,g are given by the same equations as in (29), with appropriate changes in thedefinitions of

ψc andκN c.
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III. Data on Currency Straddles, Risk-Reversals, and Butterfly Spreads

We obtain over-the-counter quotes on currency options and spot exchange rates for three currency pairs:

JPYUSD (the dollar price of one yen), GBPUSD (the dollar price of one pound), and GBPJPY (the yen

price of one pound), over the sample period of November 7, 2001 to January 28, 2004. The data are

sampled weekly. Options quotes are available at seven fixed time-to-maturities:one week, one, two,

three, six, nine, and 12 months. At each maturity, quotes are available at five fixed moneyness. There

are a total of 12,285 option quotes.

The five options at each maturity are quoted in the following forms:

• Delta-neutral Straddle Implied Volatility (SIV) : A straddle is a sum of a call option and a put

option with the same strike. The SIV market quote corresponds to a near-the-money implied

volatility that makes∆c
S+∆p

S = 0, where∆c
S= e−r f τN[d1] and∆p

S =−e−r f τN[−d1] are the Black-

Scholes delta of the call and put options in the straddle.N[·] denotes the cumulative normal

function, andd1 = ln(St/K)+(rh−r f )τ
IV

√
τ + 1

2IV
√

τ, with IV being the implied volatility input,τ being

the option time-to-maturity, andK being the strike price of the straddle. Since the delta-neutral

restriction impliesd1 = 0, the implicit strike is close to the spot or the forward price.

• Ten-delta Risk-Reversal, RR[10], and 25-delta Risk-Reversal, RR[25]: The RR[10] mea-

sures the difference in Black-Scholes implied volatility between a ten-delta out-of-the-money

call option and a ten-delta out-of-the-money put option:RR[10] = IV c[10]− IV p[10]. RR[25]

is analogously defined on 25-delta call and put options. Option traders use risk-reversal quotes

to quantify the asymmetry of the implied volatility curve, which reflects the skewness in the

risk-neutral currency distribution.

• Ten-delta Butterfly Spread, BF[10], and 25-delta Butterfly Spread, BF[25]: Butterfly spreads

are defined as the average difference between out-of-the-money impliedvolatilities and the at-

the-money implied volatility:BF[10] = (IV c[10]+ IV p[10])/2−SIV andBF[25] = (IV c[25]+

IV p[25])/2−SIV. Butterfly spread quotes capture the average curvature of the impliedvolatility

curve, which reflects the kurtosis of the risk-neutral currency returndistribution.

Based on the above definitions, we recover the underlying implied volatilities as: (i) IV (0) = SIV,

(ii) IV c[25] = BF[25] + SIV + RR[25]/2, (iii) IV p[25] = BF[25] + SIV −RR[25]/2, (iv) IV c[10] =

BF[10] + SIV + RR[10]/2, and (v)IV p[10] = BF[10] + SIV−RR[10]/2. For the purpose of estima-

tion, the volatility quotes are converted into out-of-the-money option prices. In this calculation, the
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maturity-matched domestic and foreign interest rates are constructed using LIBOR and swap rates

from Bloomberg.

Table I reports the mean, the standard deviation, and thet-statistics on the significance of the

sample mean for risk-reversal and butterfly spread series, all in percentages of the corresponding at-

the-money implied volatility (SIV). Thet-statistics adjust serial dependence according to Newey and

West (1987), with the number of lags optimally chosen according to Andrews(1991) based on an

AR(1) specification.

Average butterfly spreads are uniformly positive across all maturities, implying that out-of-the-

money option implied volatilities on average are significantly higher than the at-the-money implied

volatility. The lowestt-statistic is 10.98. Regardless of the currency pair, the butterfly spread quotes

are strongly supportive of excess kurtosis in the risk-neutral return conditional distribution.

The sign and magnitudes of risk-reversals are informative about the asymmetry of the conditional

return distribution. Consider JPYUSD where the sample averages of the risk-reversals are positive,

implying that out-of-money calls are generally more expensive than out-of-money puts. This evidence

suggests that, on average, the JPYUSD risk-neutral conditional returndistribution is right-skewed. The

average risk-reversals for GBPUSD are also positive, albeit to a lesser degree. In contrast, the average

magnitudes of risk-reversals are negative for GBPJPY, implying the presence of negative risk-neutral

return skewness.

Figure 1 plots the time-series of ten-delta risk-reversals in the left-panels and ten-delta butterfly

spreads in the right-panels, fixing maturity at one month (solid lines) and threemonths (dashed lines).

Over the sample period, there is significant variation in both risk-reversalsand butterfly spreads, but

more so for risk-reversals. Indeed, the risk-reversals vary so muchthat the sign switches. The ten-delta

risk-reversals on JPYUSD have varied from−20 percent to over 50 percent of the at-the-money implied

volatility, the risk-reversals on GBPUSD have varied from−10 to 20 percent, and the risk-reversals on

GBPJPY have varied from−35 to over 15 percent. The evidence is broadly consistent with stochastic

skewness in the conditional currency return distributions.

[Figure 1 about here.]
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IV. Joint Maximum Likelihood Estimation

We estimate the models using the time-series of both currency returns and currency option prices on

JPYUSD, GBPUSD, and GBPJPY. Since the risk premium rates are unobservable, we cast the mod-

els into a state-space form and infer the risk premium rates at each date using an efficient filtering

technique. Then, we estimate structural parameters by maximizing the joint likelihood of options and

currency returns.

In the state-space form, we regard the risk premium rates in the three economies as unobservable

states. For the general asymmetric models, we usevt ≡ [vUSD
t ,vJPY

t ,vGBP
t ,zt ] to denote the(4×1) state

vector. For the symmetric models, we drop the global risk premium ratezt from the state vector since

it is no longer identifiable. We specify the state propagation equation using anEuler approximation of

the risk premium rates dynamics:

vt = A+Φvt−1 +
√
G t εt , vt ∈ ℜ4+ (35)

whereεt denotes an i.i.d. standard normal innovation vector and

Φ = exp(−κ∆t), κ =< [κv,κv,κv,κz] >,

A = (I −Φ)θ, θ = [θv,θv,θv,θz]
⊤, (36)

G t = 〈[ω2
vvUSD

t−1 ,ω2
vvJPY

t−1 ,ω2
vvGBP

t−1 ,σ2
zzt−1]∆t〉,

where∆t = 7/365 corresponds to the weekly frequency of the data and〈·〉 denotes a diagonal matrix

with the diagonal elements given by the vector inside the bracket.

Measurement equations are based on the observed out-of-money optionprices, assuming additive,

normally-distributed measurement errors:

yt = O [vt ;Θ]+et , E(ete
⊤
t ) = J , yt ∈ ℜ105+, (37)

whereyt denotes the 105 observed out-of-money option prices scaled by Black-Scholes vega at timet

for the three currency pairs (across seven maturities and five moneyness categories).O [vt ;Θ] denotes

the corresponding model-implied values as a function of the parameter setΘ and the state vectorvt . We

assume that the scaled pricing errors are i.i.d. normal with zero mean and constant variance. Hence,

we can write the covariance matrix as,J = σr I , with σr being a scalar andI being an identity matrix

of the relevant dimension of 105.
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The objective function (37) deserves some explanation. One may chooseto define the pricing error

as the difference between the Black-Scholes implied volatility quote and its model-implied fair value.

However, recall that our algorithm generates option prices from the return characteristic function. Con-

verting the option prices into Black-Scholes implied volatility involves an additionalminimization

routine that can be inefficient when embedded in the global optimization procedure. By dividing the

out-of-the-money option prices by its Black-Scholes vegaSe−r f τ√τN′[d1], we are essentially convert-

ing the option price into the implied volatility space via a linear approximation. Scaling by
√

τ accounts

for maturity effects while scaling by the normal probability density adjusts for the fact that out-of-the-

money options are cheaper than at-the-money options. For the estimation, we first convert the implied

volatility quotes into out-of-money option prices in percentages of the underlying spot. Then, we ig-

nore the interest rate effect and apply time-homogeneous weighting on options prices at fixed delta (∆S)

and time-to-maturity:w[∆S,τ] = 1
100

√
τN′[N−1[∆S]]

.

Let vt ,Pt ,yt ,Vt denote the time-(t − 1) ex ante forecasts of time-t values of the state vector, the

covariance of the state vector, the measurement series, and the covariance of the measurement series,

respectively. Let̂vt andP̂t denote the ex post update, or filtering, on the state vector and its covariance

at the timet based on observations (yt) at timet. In the case of linear measurement equations,

yt = H vt +et , (38)

the Kalman-filter provides the most efficient updates. The ex ante predictions are,

vt = A+Φ v̂t−1,

Pt = Φ P̂t−1 Φ⊤ +G t−1, (39)

yt = H vt ,

Vt = H Pt H⊤ + J ,

and the ex-post filtering updates are,

v̂t+1 = vt+1 +K t+1(yt+1−yt+1) ,

P̂t+1 = Pt+1−K t+1Vt+1K
⊤

t+1, (40)

whereK t+1 is the Kalman gain, given by,

K t+1 = Pt+1H⊤ (
Vt+1

)−1
. (41)
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The iterative procedure defined by (39) and (40) yields a time-series ofthe ex-ante forecasts and ex-post

updates on the mean and covariance of the state vectors and observed series.

In our application, the measurement equations are not linear in the state vector. We use the un-

scented Kalman filter to cope with this nonlinearity. The unscented Kalman filter uses a set of (sigma)

points to approximate the state distribution. If we letk denote the number of states (four in the asym-

metric models and three in the symmetric models) and letζ > 0 denote a control parameter, we generate

a set of 2k+1 sigma vectorsχi according to the following equations,

χt,0 = v̂t ,

χt,i = v̂t ±
√

(k+ζ)(P̂t +G t) j , j = 1, . . . ,k; i = 1, . . . ,2k,

with the corresponding weightswi given by,

w0 = ζ/(k+ζ), wi = 1/[2(k+ζ)], i = 1, . . . ,2k.

These sigma vectors form a discrete distribution withwi being the corresponding probabilities. We can

verify that the mean, covariance, skewness, and kurtosis of this distribution arev̂t , P̂t +G t , 0, andk+ζ,

respectively. Thus, we can use the control parameterζ to accommodate conditional non-normalities in

the state propagation equation.

Given the sigma points, the prediction steps are given by:

χt,i = A+Φχt,i ,

vt+1 =
2k

∑
i=0

wi χt,i ,

Pt+1 =
2k

∑
i=0

wi (χt,i −vt+1)(χt,i −vt+1)
⊤, (42)

yt+1 =
2k

∑
i=0

wi O
[
χt,i ;Θ

]
,

Vt+1 =
2k

∑
i=0

wi
(
O

[
χt,i ;Θ

]
−yt+1

)(
O

[
χt,i ;Θ

]
−yt+1

)⊤
+ J ,

and the filtering updates are given by

v̂t+1 = vt+1 +K t+1(yt+1−yt+1) ,

P̂t+1 = Pt+1−K t+1Vt+1K
⊤

t+1, (43)
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with

K t+1 =

[
2k

∑
i=0

wi
(
χt,i −vt+1

)(
O

[
χt,i ;Θ

]
−yt+1

)⊤
]

(
Vt+1

)−1
. (44)

We refer to Wan and van der Merwe (2001) for general treatments of theunscented Kalman filter.

Given the forecasted option pricesy and its conditional covariance matrixV obtained from the

filtering technique, we compute the log likelihood value for each week’s observations on the option

prices assuming normally distributed forecasting errors,

lt+1[Θ]O = −1
2

log
∣∣Vt

∣∣− 1
2

(
(yt+1−yt+1)

⊤ (
Vt+1

)−1
(yt+1−yt+1)

)
. (45)

Furthermore, given the extracted risk premium rates from the options data,we compute the statistical

density for the weekly currency returns by applying fast Fourier inversion to the characteristic function

in (34). Let lt+1[Θ]s denote the weekly log likelihood of the currency return obtained from this fast

Fourier inversion. We choose model parameters to maximize the log likelihood ofthe data series,

which is a summation of the weekly log likelihood values on both options and currency returns,

Θ ≡ argmax
Θ
L [Θ,{yt}T

t=1], with L [Θ,{yt}T
t=1] =

T−1

∑
t=0

(
lt+1[Θ]O + lt+1[Θ]s

)
, (46)

whereT = 117 denotes the number of weeks in our sample.

V. Empirical Results

Building on established themes, the models with proportional asymmetry and strictsymmetry are es-

timated using the maximum likelihood procedure in (46). For each specification,four models are

estimated that allow for different parameterizations of the dampened power law jump class in (6).

Specifically, we allow for unrestricted power coefficient,α, and the nested special cases ofα = −1,

α = 0, andα = 1. Hence, altogether we estimate eight distinct models. The estimated model parameters

and their standard errors (in parenthesis), as well as the maximized log likelihood values, are reported

in Table II for the four symmetric models and in Table III for the four asymmetricmodels.
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A. The U.S., Japan, and UK Economies Are Asymmetric

The maximized likelihood values from the general asymmetric specifications (Table III) are much larger

than the corresponding symmetric specifications (Table II). Likelihood ratiotests for nested models

suggest that the differences are significant beyond any reasonableconfidence level. The estimated

variance of the pricing errors (σ2
r ) of the symmetric models is almost twice as large as that of the

asymmetric models. Therefore, by allowing asymmetry between the stochastic discount factors of the

U.S., Japan, and the UK, the models capture the currency return and currency options behavior much

better.

The scaling coefficient on the U.S. economy is normalized to unity:ξUSD= 1. Hence, the deviations

from unity for the estimates ofξGBP and ξJPY measure the degree of asymmetry between the three

economies. The estimates for the scaling coefficient on UK,ξGBP, are only slightly larger than one, but

the estimates for the scaling coefficient on Japan,ξJPY, are significantly larger than unity at around 1.5.

This result suggests that the Japanese economy is significantly differentfrom the U.S. economy and

the UK economy. The average risk premium in Japan is about 50 percent larger than that in the U.S. or

the UK. The larger risk premium can be due to either larger risk in the economyor higher risk aversion

for investors in Japan.

B. Risk Premium Rates on the Global Risk Factor Are More Persistent and More Volatile

Given the observed asymmetry between the three economies, we can identifythe global risk factor

and its risk premium. The estimates of the parameters that control the global riskfactor(κz,θz,σv,ρv)

are mostly statistically significant and are relatively stable across differentparameterizations onα.

Comparing the estimates for the global risk factor parameters to those on the country-specific risk

factors in Table III, we observe that the global risk premium rate is both more persistent and more

volatile than the country-specific risk premium rates. The mean-reversion parameter estimates for

the global risk factor,κz, is not distinguishable from zero, implying near non-stationary behavior.In

contrast, the estimates of mean-reversion for the country-specific factor, κv, range from 3.053 to 5.204,

implying a relatively short half life of two to three months. These estimates suggest that the variations

in the country-specific risk premium rates are much more transitory than variations in the risk premium

rate of the global risk factor.
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Furthermore, the volatility coefficient estimatesωz for the global risk premium factor are around

0.8, about five times larger than the corresponding volatility coefficientsωv for the country-specific risk

premium rates, which are between 0.14 to 0.18.

Our findings are consistent with Engle, Ito, and Lin (1990), who use the analogies of meteor show-

ers versus heat waves to describe global versus country-specific shocks, respectively. Using intra-day

exchange rate data, they find that volatility clustering in exchange rates is mainly driven by global

shocks. Using weekly data on currency returns and currency options, we document that the risk pre-

mium rates on the global risk factor are both more persistent and more volatile than the risk premium

rates on the country-specific risk factors. Our findings also suggest that the more permanent variations

of the state-price deflator are mainly driven by a global risk component, indicating a high degree of in-

ternational integration among the three economies. In this sense our evidence on the role of the global

risk factor agrees with Brandt, Cochrane, and Santa-Clara (2004), who reason that the log stochastic

discount factors must be highly correlated to explain the relative smoothness of the exchange rates.

C. Risk Premium Increases When the Wealth DeclinesRelative to the Global Portfolio

The correlation parameterρz captures how the risk premium rate changes with the global shocks while

the correlation parameterρv measures how the risk premium rate changes with the country-specific

shocks. The estimates forρv are strongly negative between -0.702 and -0.999, depending on different

α specifications. A negative correlation implies that the risk premium increaseswhen the economy

receives a negative country-specific shock. Such a risk premium increase can come from either or

both of the two sources: (1) A negative shock is associated with higher economy-wide volatility. (2)

Investors become significantly more risk averse after a negative shock and demand higher compensation

for the same amount of risk.

Our empirical estimates for the correlation between the risk premium rate and theglobal risk factor

ρz are positive and range between 0.52 to 0.65. Thus, investors respond quite differently to the global

risk component and the country-specific risk component. Although investors demand a higher risk

premium in the presence of a negative country-specific shock to the economy, they actually ask for a

lower risk premium if the origin of the negative shock is global.

A possible interpretation for the different responses is that the risk premium in an economy changes

with the relative wealth of the economy with the global portfolio serving as a benchmark. Investors

demand a higher premium only when the wealth of the economy declines relativeto the global portfolio.

Thus, when the global risk factor receives a negative shock, the economy wealth decreases in absolute
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terms, but increases relative to the global portfolio, and hence the risk premium declines. In contrast,

a negative shock to the country-specific risk factor decreases the economy wealth in both absolute and

relative terms, and the risk premium in this economy increases unambiguously.

When studying how an economy responds to external shocks, it is importantto distinguish the

different possible sources of the shocks. An analysis that fails to discriminate between country-specific

and global shocks can lead to misleading conclusions. It is worthwhile to mention that the extant

literature often studies the behavior of stochastic discount factors and economy-wide risk premium

using equity index returns and equity index options. Since the stochastic discount factors estimated

from these data are projections of the pricing kernel on the equity index ofa single economy, these

studies do not typically distinguish between global shocks versus country-specific shocks. Our joint

analysis based on a triangular pair of currency returns and currencyoptions reveals the complex multi-

dimensional feature of the stochastic discount factors in international economies and highlights the

inadequacy of one-dimensional projections.

D. Jumps Arrive Frequently, But Only Downside Jumps Are Priced

Our model for the stochastic discount factors incorporates a jump component, the arrival rate of which

follows an exponentially dampened power law. Under this specification, the power coefficientα con-

trols the jump type. The model generates finite-activity jumps whenα < 0, under which jumps arrive

only a finite number of times within any finite interval and hence can be regarded as rare events. On

the other hand, whenα ≥ 0, jumps arrive an infinite number of times within any finite interval and can

therefore be used to capture more frequent movements.

When we estimate the general asymmetric model withα as a free parameter, the estimate forα is

0.227. Nevertheless, the estimate has large standard error, suggesting potential identification problems.

Thus, within the general specification, we also estimate three special caseswith α fixed at−1, 0, and 1.

As shown in Table III for the asymmetric model, the model withα = 1 generates the highest likelihood

value among the three special cases, indicating that jumps in the three economies are not rare events,

but rather arrive frequently.

The relative asymmetry of jumps are controlled by the two exponential dampening coefficientsβ+

andβ−. A larger dampening coefficientβ+ implies a smaller arrival rate for positive jumps and vice

versa. Table III shows that the estimates forβ+ are substantially larger than those forβ−, more so when

α is larger and hence when more frequent jumps are allowed. The large estimates forβ+ suggest that

we rarely observe positive jumps in the stochastic discount factors. In fact, the standard errors forβ+
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are also very larger, suggesting that positive jumps are so rare that we cannot accurately identify the

parameter that control the positive jumps. Therefore, we can safely assume a one-sided jump structure

for the log stochastic discount factor by setting the arrival rate of positive jumps to zero:ν[x] = 0 for

x > 0.

To pursue this angle, Table IV reports the parameter estimates and maximized loglikelihood values

under this one-sided jump assumption. The estimates for most of the parametersare close to those

reported in Table III under the two-sided jump parameterization. The likelihood values are also about

the same. The only difference is that with the one-sided jump assumption in TableIV, the standard

errors of some parameters decline, showing better identification with the more parsimonious one-sided

specification. Therefore, our results support the lack of a significantpricing component for positive

jumps in the stochastic discount factors.

In reality, the wealth of an economy can both jump up and jump down, with the distribution rel-

atively symmetric. The fact that we can only detect a downside jump component in the stochastic

discount factor implies that investors are only concerned with downside jumps in the economy while

ignoring upside jumps for pricing. In other words, only downside jumps areperceived as risk and are

priced.

The presence of priced frequent downside jumps in the stochastic discount factors provides theoret-

ical justification for the prevailing evidence from equity index option markets.Although the statistical

return distribution for equity indexes is relatively symmetric, the risk-neutraldistributions computed

from option prices are highly negatively skewed (Jackwerth and Rubinstein (1996), and Bakshi, Kapa-

dia, and Madan (2003)). Carr and Wu (2003) show that a one-sidedα-stable law, without exponential

dampening, captures the S&P 500 index options price behavior well. When applying measure changes

using exponential martingales,α-stable laws are converted into exponentially dampened power laws.

Hence, the dampened power law specification subsumes theα-stable specification.

VI. Conclusions

In this paper, we propose to infer the dynamic behaviors of the stochastic discount factors in inter-

national economies from currency returns and currency options. We first develop a class of models

of stochastic discount factors that are sufficiently flexible to capture the observed behaviors of cur-

rency returns and currency options, especially stochastic risk premiums and stochastic skewness. We

then estimate these models using time-series of currency returns and option prices on three currencies
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that form a triangular relation: the dollar price of yen, the dollar price of pound, and the yen price of

pound. Based on the estimation results, we investigate whether investors show a differential response

to country-specific risks versus global risks, and to upside-jump versus downside-jump risks. We also

investigate how risk premium reacts to shocks emanating from different sources.

Our estimation results show that the average risk premium in Japan is about 50percent larger than

the average risk premium in the U.S. or UK. The asymmetry between the three economies enables

us to identify both the global risk factor and the country-specific risk factors and their associated risk

premium dynamics. We find that the risk premium rate on the global risk factor isboth more persistent

and more volatile than the risk premium rates on the country-specific risks. Furthermore, investors react

differently to shocks to the global risk factor and the country-specific risk factors. Investors demand a

higher risk premium when the economy receives a negative shock that is country-specific, but demand

a lower premium when the negative shock is global. Hence, the risk premium inan economy increases

only when the wealth of the economy declines relative to the global portfolio. Finally, our estimation

shows that jumps in each economy are not rare events, but arrive veryfrequently. However, investors

only price downside jumps while upside jumps are not perceived as risk.

Traditional literature has studied the behavior of stochastic discount factors either through point es-

timates on various types of expectation hypotheses regressions, or more recently, through one-dimensional

projections to equity indexes. Our study shows that the stochastic discountfactors in international

economies show complex multi-dimensional dynamic behaviors that cannot possibly be fully disentan-

gled through point estimates or one-dimensional projections. Future research calls for a joint analysis

of the international bond, equity, and currency markets and their options toobtain a finer distinction

between the dynamics of risk and pricing.
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Table I
Risk-Reversals and Butterfly Spreads

Each maturity has four set of volatility quotes in the form of ten-delta risk-reversal (denoted RR[10]),
25-delta risk-reversal (denoted RR[25]), ten-delta butterfly spread(denoted BF[10]), and 25-delta but-
terfly spread (denoted BF[25]), all as percentages of the corresponding at-the-money implied volatility
(SIV). Each row represents a single maturity. The first column denotes theoption maturity, with ‘w’
denoting weeks and ‘m’ denoting months. Reported are the mean, the standard deviation, and thet-
statistics on the significance of the sample mean for each risk-reversal andbutterfly spread series. The
t-statistics adjust serial dependence according to Newey and West (1987), with the number of lags op-
timally chosen according to Andrews (1991) based on an AR(1) specification. Data are weekly from
November 7, 2001 to January 28, 2004.

Mat. RR[10] RR[25] BF[10] BF[25]

JPYUSD
1w 11.63 13.81 3.34 6.45 7.59 3.35 13.65 3.84 11.77 3.40 0.74 15.50
1m 12.53 13.64 3.20 6.94 7.56 3.20 13.90 3.40 12.75 3.57 0.62 18.42
2m 13.91 14.89 2.85 7.55 8.08 2.83 14.49 2.93 14.81 3.70 0.53 21.80
3m 14.47 15.78 2.59 7.86 8.61 2.58 14.91 2.56 17.18 3.79 0.47 25.42
6m 15.30 17.98 2.21 8.23 9.74 2.20 15.43 2.20 19.71 4.02 0.38 31.52
9m 15.79 19.41 2.08 8.45 10.36 2.08 16.23 2.04 21.75 4.13 0.40 29.23

12m 16.19 20.47 2.00 8.63 10.94 2.00 16.55 2.03 21.78 4.18 0.43 27.25

GBPUSD
1w 5.86 8.07 2.93 3.26 4.42 2.98 9.74 2.65 11.11 2.82 0.59 15.90
1m 5.73 7.08 2.79 3.21 3.93 2.86 9.79 2.39 10.98 2.83 0.55 14.79
2m 5.51 6.32 2.81 3.19 3.60 2.94 9.55 2.12 11.56 2.76 0.48 15.91
3m 5.30 5.81 2.79 3.01 3.25 2.90 9.64 1.68 15.46 2.71 0.42 17.74
6m 4.87 5.40 2.25 2.75 2.97 2.32 9.53 1.15 25.83 2.47 0.46 13.75
9m 4.80 5.27 2.16 2.72 2.91 2.19 9.49 0.99 29.88 2.46 0.42 13.89

12m 4.68 5.30 2.01 2.67 2.89 2.09 9.37 0.91 32.86 2.42 0.41 15.14

GBPJPY
1w -5.85 12.08 -1.73 -3.18 6.58 -1.72 11.09 2.56 17.06 2.95 0.80 14.38
1m -6.42 12.32 -1.70 -3.51 6.69 -1.71 11.51 2.16 20.36 3.17 0.48 26.87
2m -6.32 12.48 -1.62 -3.41 6.68 -1.62 12.02 2.12 19.55 3.31 0.45 28.28
3m -6.02 12.57 -1.52 -3.28 6.74 -1.54 12.44 2.13 18.19 3.44 0.43 28.59
6m -5.76 12.62 -1.43 -3.12 6.80 -1.43 13.07 2.00 18.26 3.54 0.49 21.35
9m -5.72 12.75 -1.40 -3.08 6.86 -1.39 13.47 2.16 16.51 3.65 0.60 16.67

12m -5.70 13.01 -1.35 -3.06 6.98 -1.35 13.64 2.11 16.83 3.69 0.63 15.74
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Table II
Maximum Likelihood Estimates of Model Parameters under Strict Symmetry

Entries report the maximum likelihood estimates of the structural parameters andtheir standard errors
(in parentheses) for the models admitting stochastic currency risk premium and stochastic skewness
under strict symmetry. Four separate models are estimated that respectivelyallow the power coefficient,
α, in the dampened power law specification for the jump component to take valuesof α = −1, α = 0,
α = 1, andα unrestricted. Estimation is based on weekly currency return and currency options data
from November 7, 2001 to January 28, 2004 (117 weekly observationsfor each series). The last row
reports the maximized log likelihood value.σ2

r represents the variance of the measurement error.

Θ α = −1 α = 0 α = 1 Freeα

σ2
r 0.336 ( 0.004 ) 0.334 ( 0.004 ) 0.329 ( 0.004 ) 0.324 ( 0.005 )

κv 2.149 ( 0.108 ) 1.912 ( 0.096 ) 1.531 ( 0.053 ) 1.210 ( 0.081 )
θv 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.004 ( 0.000 ) 0.001 ( 0.014 )
ωv 0.149 ( 0.010 ) 0.150 ( 0.009 ) 0.148 ( 0.008 ) 0.081 ( 0.486 )
ρv -0.252 ( 0.054 ) -0.321 ( 0.048 ) -0.412 ( 0.046 ) -0.898 ( 5.433 )
λ 17.684 ( 1.589 ) 5.255 ( 0.500 ) 1.184 ( 0.392 ) 0.747 ( 9.170 )
β− 4.623 ( 0.117 ) 4.146 ( 0.078 ) 3.835 ( 1.032 ) 4.420 ( 4.146 )
β+ 43.513 ( 6.9e2 ) 58.234 ( 4.4e2 ) 97.645 ( 3.7e2 ) 3.1e4 ( 4.5e6 )
α -1 — 0 — 1 — 1.810 ( 0.403 )

L /T 1.62 1.58 1.67 1.93
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Table III
Maximum Likelihood Estimates of Model Parameters under Proportional Asymmetry

Entries report the maximum likelihood estimates of the structural parameters andtheir standard errors
(in parentheses) for the models admitting stochastic currency risk premium and stochastic skewness
under proportional asymmetry. Four separate models are estimated that respectively allow the power
coefficient,α, in the dampened power law specification for the jump component to take valuesof
α = −1, α = 0, α = 1, andα unrestricted. Estimation is based on weekly currency return and currency
options data from November 7, 2001 to January 28, 2004. The last row reports the maximized average
daily log likelihood value.σ2

r represents the variance of the measurement error.

Θ α = −1 α = 0 α = 1 Freeα

σ2
r 0.174 ( 0.002 ) 0.175 ( 0.002 ) 0.167 ( 0.003 ) 0.167 ( 0.002 )

ξJPY 1.507 ( 0.027 ) 1.508 ( 0.028 ) 1.531 ( 0.035 ) 1.531 ( 0.034 )
ξGBP 1.017 ( 0.005 ) 1.016 ( 0.006 ) 1.007 ( 0.006 ) 1.007 ( 0.005 )
κz 0.000 ( 0.006 ) 0.000 ( 0.006 ) 0.000 ( 0.006 ) 0.000 ( 0.005 )
θz 0.230 ( 0.069 ) 0.231 ( 0.065 ) 0.356 ( 0.220 ) 0.357 ( 0.223 )
ωz 0.807 ( 0.069 ) 0.797 ( 0.069 ) 0.815 ( 0.053 ) 0.813 ( 0.050 )
ρz 0.650 ( 0.059 ) 0.626 ( 0.059 ) 0.521 ( 0.034 ) 0.524 ( 0.035 )
κv 5.204 ( 0.190 ) 4.921 ( 0.210 ) 3.061 ( 0.059 ) 3.053 ( 0.061 )
θv 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.006 ) 0.003 ( 0.001 )
ωv 0.183 ( 0.006 ) 0.174 ( 0.006 ) 0.137 ( 0.163 ) 0.138 ( 0.016 )
ρv -0.702 ( 0.046 ) -0.713 ( 0.048 ) -0.996 ( 1.185 ) -0.999 ( 0.115 )
λ 18.698 ( 9.146 ) 5.659 ( 1.428 ) 20.489 ( 54.032 ) 815.387 ( 7.8e3 )
β− 5.132 ( 0.936 ) 4.523 ( 0.686 ) 36.767 ( 9.842 ) 63.069 ( 59.324 )
β+ 1.2e2 ( 4.3e4 ) 1.4e2 ( 7.8e3 ) 2.5e3 ( 6.9e5 ) 4.7e4 ( 6.9e4 )
α -1 — 0 — 1 — 0.227 ( 2.205 )

L /T 32.97 32.84 33.96 34.10
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Table IV
Maximum Likelihood Estimates of Model Parameters Assuming One-Sided Jumps

Entries report the maximum likelihood estimates of the structural parameters andtheir standard errors
(in parentheses) for the models admitting stochastic currency risk premium and stochastic skewness
under proportional asymmetry and assuming only negative jumps. Four separate models are estimated
that respectively allow the power coefficient,α, in the dampened power law specification for the jump
component to take values ofα = −1, α = 0, α = 1, andα unrestricted. Estimation is based on weekly
currency return and currency options data from November 7, 2001 to January 28, 2004. The last row re-
ports the maximized average daily log likelihood value.σ2

r represents the variance of the measurement
error.

Θ α = −1 α = 0 α = 1 Freeα

σ2
r 0.174 ( 0.002 ) 0.175 ( 0.002 ) 0.167 ( 0.003 ) 0.167 ( 0.002 )

ξJPY 1.507 ( 0.026 ) 1.509 ( 0.027 ) 1.531 ( 0.034 ) 1.530 ( 0.034 )
ξGBP 1.017 ( 0.005 ) 1.016 ( 0.006 ) 1.007 ( 0.005 ) 1.008 ( 0.005 )
κz 0.000 ( 0.005 ) 0.000 ( 0.005 ) 0.000 ( 0.006 ) 0.000 ( 0.006 )
θz 0.230 ( 0.066 ) 0.231 ( 0.060 ) 0.357 ( 0.196 ) 0.348 ( 0.289 )
ωz 0.807 ( 0.069 ) 0.797 ( 0.068 ) 0.814 ( 0.051 ) 0.805 ( 0.051 )
ρz 0.650 ( 0.058 ) 0.626 ( 0.058 ) 0.521 ( 0.034 ) 0.529 ( 0.035 )
κv 5.203 ( 0.185 ) 4.924 ( 0.200 ) 3.053 ( 0.046 ) 3.034 ( 0.065 )
θv 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.001 )
ωv 0.183 ( 0.006 ) 0.174 ( 0.006 ) 0.137 ( 0.011 ) 0.138 ( 0.018 )
ρv -0.702 ( 0.042 ) -0.713 ( 0.045 ) -0.996 ( 0.094 ) -0.999 ( 0.129 )
λ 18.698 ( 9.137 ) 5.658 ( 1.408 ) 21.199 ( 10.585 ) 8.8e2 ( 9.4e3 )
β− 5.132 ( 0.935 ) 4.526 ( 0.690 ) 37.329 ( 9.718 ) 66.157 ( 70.052 )
α -1 — 0 — 1 — 0.240 ( 2.428 )

L /T 32.97 32.84 33.96 34.10
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Figure 1. Time-Variation in Risk-Reversals and Butterfly Spreads:Left panels plot the time-series
of ten-delta risk-reversals and the right panels plot the time-series of ten-delta butterfly spreads, both as
a percentage of at-the-money implied volatility. The two lines correspond to distinct option maturities
of one month (solid line) and three months (dashed line). Data are weekly from November 7, 2001 to
January 28, 2004.
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